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Abstract 
Hydrologists often have a detailed yet highly qualitative understanding of dominant 

runoff processes—thus we usually know much more about a catchment than we use for 

calibration of a model. We present a new method where soft data (i.e., qualitative 

knowledge from the experimentalist that cannot be used directly as exact numbers) is 

made useful through fuzzy measures of model-simulation and parameter-value 

acceptability. A three-box lumped conceptual model was developed for the Maimai 

catchment in New Zealand, a particularly well-studied process-hydrological research 

catchment. The boxes represent the key hydrological reservoirs that are known to have 

distinct groundwater dynamics, isotopic composition and solute chemistry. The model 

was calibrated against hard data (runoff and groundwater-levels) as well as a number of 

criteria derived from the soft data (e.g. percent new water, reservoir volume etc). We 

achieved very good fits for the three-box model when optimizing the parameter values 

with only runoff (Reff=0.92). However, parameter sets obtained in this way, showed in 

general a poor goodness-of-fit for other criteria such as the simulated new-water 

contributions to peak runoff. Including soft-data criteria lead to lower Reff-values (around 

0.86 when including all criteria) but led to better overall performance. We argue that 

accepting lower model efficiencies for runoff is worth it if one can develop a more “real” 

model of catchment behavior.  

Introduction 
Catchment hydrology is at a cross-roads. While complex descriptions of the age, origin 

and pathway of subsurface stormflow abound in the literature (reviewed recently by 

Bonell, 1998), most catchment modeling studies do not fully use this information for 

model development, calibration and testing. As a result, process hydrological studies of 

dominant runoff producing processes and model studies of runoff generation are often 



 

 

poorly linked. Recently there has been a tendency away from fully-distributed, 

physically-based models back to conceptual models due to concerns 

overparameterisation, parameter uncertainty and model output uncertainty. While 

conceptual models may be much more simplified and lumped they offer the potential for 

development based on process understanding of key zones or reservoirs of catchment 

response. As interest in the geochemical dimensions of streamflow modeling increases, 

reservoir (or box model) conceptual approaches that explicitly treat volume-based mixing 

and water (and ultimately tracer) mass balance become increasing useful (Harris et al., 

1995; Hooper et al., 1998; Seibert, 1999).  

A major obstacle in moving forward with conceptual modeling approaches is how 

to fully utilize experimental data for internal calibration and validation. Currently, the use 

of this field data for model calibration is often limited beyond simple streamflow 

information despite the general acceptance that internal state information is necessary for 

ensuring model consistency. The usefulness of having various criteria for assessment of 

model performance is widely accepted (Freer et al., 1998). When multi-criteria are used 

for calibration or validation, this has often meant only the use of two or three criteria (e.g. 

runoff and groundwater levels) as compared to only one criterion (i.e. runoff). Clearly, 

more criteria are desirable but in most cases there is no suitable data available. The 

dilemma in conceptual modeling of catchment hydrology is that parsimonious models, 

which may allow identification of parameter values through calibration against runoff, in 

general are too simple to allow a realistic representation of the main hydrological 

processes and, thus, provide only limited possibilities for internal model testing. This 

paper explores a new philosophy and approach for development of more realistic models 

of catchment behavior using "soft data" where multiple criteria can now be used to 

constrain the model in various aspects. 

Hydrologists often have a detailed yet qualitative understanding of dominant 

runoff processes and we usually know much more about a catchment than we use for 

calibration of a model. This soft data is a qualitative knowledge from the experimentalist, 

that cannot be used as exact numbers but is made useful through fuzzy measures of 

model-simulation and parameter-value acceptability. We argue that this method is the 

necessary dialog that must occur between the modeler and the experimentalist to enable a 



 

 

better process representation of catchment hydrology in conceptual runoff models. We 

use the well-characterized Maimai watershed as the testing ground for these new ideas. 

Thus, this paper: (1) presents a new 3-box model of headwater catchment response based 

on an extension of ideas developed in Seibert et al. (this issue), (2) incorporates a number 

of soft-data measures from experimental studies at the catchment for model calibration, 

and (3) assesses the value of soft data relative to traditional hard information measures. 

Study site and perceptual model 

The Maimai watershed 
Maimai M8 is small 3.8 ha study catchment located to the east of the Paparoa Mountain 

Range on the South Island of New Zealand. Slopes are short (<300 m) and steep (average 

34o) with local relief of 100-150 m. Stream channels are deeply incised and lower 

portions of the slope profiles are strongly convex. Areas that could contribute to storm 

response by saturation overland flow are small and limited to 4-7 % (Mosley, 1979; 

Pearce et al., 1986). Mean annual precipitation is approximately 2600 mm, producing an 

estimated 1550 mm of runoff.  The summer months are the driest; monthly rainfall from 

December to February averages 165 mm and for the rest of the year between 190 to 270 

mm. On average, there are 156 rain days per year with little temperature extreme and 

only about 2 snow days per year (Rowe et al., 1994). In addition to being wet, the 

catchments are highly responsive to storm rainfall. Quickflow comprises 65% of the 

mean annual runoff and 39% of annual total rainfall (Pearce et al., 1986). 

The watershed is underlain by a firmly compacted poorly impermeable 

conglomerate--seepage losses to deep groundwater are estimated at 100 mm/yr. The wet 

and humid climatic environment, in conjunction with topographic and soil characteristics, 

result in the soils normally remaining within 10% of saturation (Mosley, 1979). As a 

result, the soils are strongly weathered and leached, with low natural fertility. The thin 

nature of the soils promotes the lateral development of root networks and channels. Soil 

profiles reveal extensive macropores and preferential flow pathways at vertical pit faces 

which form along cracks and holes in the soil and along live and dead root channels 

(Mosley 1979). Lateral root channel networks are evident in the numerous tree throws 



 

 

that exist throughout the catchments. Preferential flow also occurs along soil horizon 

planes and the soil-bedrock interface.  

Perceptual model of the Maimai watershed 
M8 has been the site of ongoing hillslope research by several research teams since the 

late 1970s. These studies have facilitated the development of a very detailed yet 

qualitative perceptual model of hillslope hydrology, reviewed recently by McDonnell et 

al. (in press). While dye tracer studies by Mosley (1979) showed that storm rainfall 

follows preferential flow pathways at the hillslope scale, subsequent water isotopic 

tracing studies in the catchment by Pearce et al. (1986) and Sklash et al. (1986) showed 

(paradoxically) that there was little if any “event” water in the stream during stormflow 

periods. Thus, stored soil water and groundwater comprise the majority of channel 

stormflow. McDonnell (1990) developed a perceptual model to explain the mechanism of 

stormflow generation by constraining the dominant processes using recording 

tensiometer observations, isotope tracing and various other chemical and hydrometric 

approaches. For small events of less than about 15 mm rainfall, McDonnell et al. (1991) 

found that the riparian zone could account for the volume of old water in the channel 

hydrograph. During larger events, McDonnell (1990) found that hillslope hollows were 

the dominant runoff producing zones where new water moved to depth and created a 

perched water table at the soil-bedrock interface. Lateral pipeflow then formed along the 

soil bedrock interface (McDonnell et al., 1997), conveying quantities of old water 

laterally downslope sufficient in quantity and quality to explain measured old water 

volumes. Topographic convergence of flowpaths from hillslopes to the hollows enabled 

hollows to be well-primed for rapid conversion of matrix to pressure potentials. Soil 

water isotopic composition (McDonnell et al., 1991) and chemical composition (Grady et 

al., 2000) all followed a similar pattern of evolution along three major runoff response 

zones and inter-storm reservoirs: hillslopes, hollows and riparian zones. 

Model theory 

Conceptual three-box model 
The conceptual model is based on the three reservoirs identified from the experimental 

studies at M8: riparian, hollow and hillslope zones (Fig. 1). Water is simulated to flow 



 

 

from the hillslope zone into the hollow zone and from the hollow zone into the riparian 

zone. Outflow from the riparian zone is taken as catchment runoff. No lateral flow is 

assumed to take place from the unsaturated reservoirs and no bypass flow from hillslope 

to the stream is allowed. Tensiometer data has shown that shallow groundwater in the 

hillslope reservoir (groundwater levels 0 – 1.5 m below the ground surface) exhibits 

considerable interaction between saturated and unsaturated storage. Thus, a coupled 

formulation of the saturated and unsaturated storage is used (for description see Seibert et 

al., this issue). 

Outflow from the hillslope and riparian reservoir is computed as a simple linear 

function. The hollow reservoir is given an additional threshold-based linear function 

based on the McDonnell (1990; pp. 2830 Fig 10) perceptual model (Eq. 1-3): 

hillslopehillslopehillslope SkQ ,1=  (1) 

( ) thresholdhollowthresholdhollowhollowthresholdhollowhollow
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riparianriparianriparian SkQ ,1=  (3) 

This use of a threshold in the hollow reservoir is also motivated by field observations 

reported by McDonnell et al. (1998) that indicate large fluxes through macropores along 

the bedrock-soil interface. 

Utilization of soft information 
Given the relatively large number of parameters (20) in the three-box model, the 

information contained in the hard data (runoff and two groundwater-level series) is 

insufficient for calibration of the parameter values. Soft data can be used in two ways to 

constrain the calibration: (1) to assess how reasonable the parameter values might be and 

(2) to evaluate aspects of the model simulations for which there is no hard data available 

(Table 1). A general characteristic of comparing parameter values or model simulations 

with such soft data is that there is a relatively wide range of similar acceptable values. 

Furthermore, there might be a range of values that fall between fully acceptable and not 

acceptable. Fuzzy measures of acceptance are used to consider these ranges. For each soft 

data a trapezoidal function (Equation 4) is defined to compute the degree of acceptance 

from the corresponding simulated quantity or parameter value. 
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Soft data enables the judging of model simulations in more ways than those for which 

hard data are available. For instance, the field hydrologist might have an idea about the 

range in which groundwater levels fluctuate or the contribution of new water to peak 

flow. In this study, we assessed model performance by comparing simulated 

contributions of new water to catchment runoff with results from hydrograph separations 

reported in and McDonnell et al. (1991) for a number of events. For each event, ranges of 

degree of acceptance were computed based on the simulated new-water contribution and 

pre-defined ranges of for acceptable and perfect simulations (Table 2). 

Model parameters in conceptual models are not directly measurable. Parameters 

may be related to measurable quantities but they are effective values for a much larger 

scale than the measurement scale. In general parameter values for a conceptual model are 

found by calibration. However, for many parameters the field hydrologist might reject or 

prefer values within certain ranges. Usually the search of parameter values is constrained 

by feasible ranges. Based on the perceptual model of the catchment runoff response we 

added a desirable range, which was smaller than the feasible range, for a number of 

parameters. For each of these parameters a degree of acceptance was computed. This 

value varied from one, if the value was within the desirable ranges and decreased towards 

zero with increasing deviations from this range (Table 2). For example, we allowed 

searching values from 5 to 20 percent for the spatial fraction of the hollow zone, but the 

degree of acceptance was one only for values between 10 and 15 percent. Based on the 

individual parameters the acceptability of a certain parameter set was computed as the 

geometric mean of the respective degrees of acceptance. 

 

 



 

 

Table 1. The three different ways of evaluating model acceptability based on hard data 

(A1) and soft (A2 and A3) data.. 

 Acceptability according to … Example Measure 
A1 Fit between simulated and 

observed data 
Runoff Efficiency 

A2 Agreement with perceptual 
(qualitative) knowledge 

New water 
contribution 

Percentage of peak flow 
for certain events 

A3 Reasonability of parameter 
values 

Spatial extension of 
riparian zone 

Fraction of catchment 
area 

 
 The acceptability considering hard data (A1) was computed from the efficiency 

(Nash & Sutcliffe, 1970) of the runoff simulation, Reff, the relative volume error, V, and r2 

values for the groundwater levels in the riparian and the hollow zone (Eq. 5).Following 

Lindström (1997) a value of 0.1 is chosen for the weighing coefficient ω. 

( )22
1 2

1
ripariangwgwholloweff rrVRA +−= ω  (5) 

 

A2 was computed as arithmetic mean of the 15 evaluation rules of the soft data regarding 

groundwater levels and contribution of new water (Table 2). The geometric mean of the 

nine evaluation rules of the different parameters was taken for A3 (Table 2). Generally the 

geometric mean was used whenever all measures were larger zero. 

The overall acceptability, A, of a parameter set was computed as a weighted 

geometric mean (Eq. 6). Values of 2, 2 and 1 were chosen for n1, n2, and n3 respectively 

to place more emphasize on the acceptability with regard to the simulations.  

321321
321 nnnnwithAAAA n nnn ++==  (6) 

We also tested the worth of adding additional criteria by calibrating the model with a 

varying set of criteria. The genetic algorithm, as described by Seibert (2000), includes 

stochastic elements. Thus, calibrated parameter values may differ, especially when there 

is a significant parameter uncertainty. To address the parameter uncertainty 15 calibration 

trials were performed for each goodness-of-model measure and the best 12 parameter sets 

were used for further analysis. The period of record for calibration was August-

December, 1987.  

 



 

 

Table 2. Evaluation rules based on soft data used for model calibration (the values for ai 
define the trapezoidal function used to compute the degree of acceptance, see Eq. 6) 

Type of soft 
information 

Specific soft information a1 a2 a3 a4 Motivation  

870930 18.00 0.03 0.06 0.12 0.15 McDonnell et al 1991 
871008 3.00 0.05 0.13 0.31 0.40 “ 
871010 17.00 - 0 0.03 0.06 “ 
871013 11.00 0.17 0.23 0.35 0.41 “ 
871113 19.00 - 0 0.03 0.06 “ 

New water 
contribution to peak 
runoff [-] 

871127 8.00 0.04 0.07 0.13 0.16 “ 

Maximum hillslope 0 0.2 0.5 0.7   McDonnell (1989) 
Maximum hollow 0 0.5 0.75 1     McDonnell (1990) 
Minimum hollow 0 0.05 0.1 0.2   “ 

Range of groundwater 
levels, min./max. 
fraction of saturated 
soil [-] Minimum 

riparian 
0.05 0.1 0.3 0.5   “ 

Hillslope, above 0.5 during events - 0 0.1 0.3  McDonnell et al. (1997) 
Hollow above 0.7 during events - 0 0.1 0.2  McDonnell (1990) 
Hollow above 0.9 during events - - 0 0.1  McDonnell (1990) 
Riparian above 0.2 0.6 0.8 1 1   McDonnell (1990) 

Frequency of 
groundwater levels 
above a certain level 
(as fraction of soil [-]) 
[-] Riparian above 0.9 during events 0 0.25 0.75 1   McDonnell (1990) 

Parameter values Fraction of riparian zone [-] 0.01 0.03 0.07 0.10 Mosley (1979) 
 Fraction of hollow zone [-] 0.05 0.10 0.15 0.20 McDonnell (1990) 
 Porosity in hillslope zone [-] 0.45 0.6 0.7  0.75 (McDonnell, 1989) 
 Porosity in hollow zone [-] 0.45 0.55 0.65 0.75 McDonnell (1989) 
 Porosity in riparian zone [-] 0.45 0.5 0.6 0.75 “ 
 Soil depth for hillslope zone [m] 0.1 0.3 0.8 1.5 McDonnell et al. (1997) 
 Soil depth for hollow zone [m] 0.5 1 2 2.5 “ 
 Soil depth for riparian zone [m] 0.15 0.4 0.75 1 “ 
 Threshold level in hollow zone, 

fraction of soil depth [-] 
0 0.1 0.4  1 McDonnell (1990) 

McDonnell et al. (1991) 

Results and Discussion 

Model output  
The model was able to reproduce observed runoff. Model simulations calibrated with 

only runoff values led to very good fits with Reff of 0.92. Efficiency values were also 

satisfactory (around 0.86) when the model was calibrated with respect to all criteria 

(Fig.2). The decrease of unsaturated storage decreased during events is a result of the 

coupled formulation of saturated and unsaturated storage. 

Parameter uncertainty 
Adding different criteria in general reduced parameter uncertainty, but results were mixed 

among the parameters. The reduction of parameter uncertainty was most obvious for the 

outflow coefficients. The range of calibrated parameter values decreased when using all 

criteria compared to when only using the hard data (runoff and groundwater levels). The 

coefficients of variation computed from the 12 values obtained by the different 



 

 

calibration trials were used as a measure of parameter uncertainty. On average, using all 

criteria helped to reduce parameter uncertainty to a third relative to a single criteria 

calibration against only runoff. Including hard groundwater data or soft data for new-

water contribution to peak runoff also reduced parameter uncertainty, but not as 

significant as the combination of different criteria. 

Overall performance 
The model performance with regard to the various criteria varied of course between the 

parameter sets, which had been calibrated using different combinations of these criteria 

(Figure 4). Calibration against only one or two criteria led to poor simulations according 

to the other criteria. For example, the best parameter sets according to runoff (median 

efficiency 0.93) were poor in their ability to correctly reproduce hard and soft 

groundwater levels (r2=0.41 and µgw=0.29). While the calibration against all criteria did 

not provide the best fits according to single criteria, the best overall performance was 

obtained in this way. Compared to the calibration using only hard data (A1, runoff and 

groundwater) the efficiency dropped (median values from 0.91 to 0.86), but the 

contribution of new water to peak runoff was much better reproduced (median 

µnew water=0.8 compared to 0.67). 

On the value of soft information 
Runoff simulation from the Maimai watershed is relatively easy by comparison to many 

catchments since there is only minimal seasonality and soils are transmissive and 

underlain by impermeable substrate. Previous TOPMODEL simulations (Beven and 

Freer, 2000) at the site and the present study have all achieved good fits for streamflow. 

However, simply modeling runoff with a high efficiency is not a challenging test of 

model performance. This work shows that sometimes lower Reff-values are “the price we 

have to pay” to obtain a better overall model performance and better adherence to the 

perceptual model of runoff generation. The question then becomes: Is this reduction 

worth accepting to achieve a better conceptualization with respect to the soft data 

available? We argue from data presented in this paper that it is indeed worth accepting 

lower runoff-efficiency values if one can develop a more “real” model of the catchment. 

The parameter set determined by using several criteria for calibration (based on hard and 



 

 

soft data) will in most cases lead to a poorer fit of simulated and observed catchment, but 

move the model to one that better captures the key processes that the experimentalist 

feels is important in controlling catchment response. 

Concluding remarks 

This study has attempted to use multi-criteria soft data for model development and for 

internal calibration and validation. The study shows that conceptual modeling of 

catchment hydrology can include identification of parameter values through calibration 

against hard and soft data. We believe that this approach is the way forward for 

development of more realistic models of catchment behavior using soft data where 

multiple criteria can now be used to constrain the model in various ways. This soft data is 

a qualitative knowledge from the experimentalist, which cannot be used as exact numbers 

but is made useful through fuzzy measures of model-simulation and parameter-value 

acceptability. We argue that the necessary dialog that must occur between the modeler 

and the experimentalist can be made explicit in this way. We propose that this approach 

is also useful for comparing the value of different field measurements that 

experimentalists might make in support of modeling. We are currently exploring other 

types of soft data (e.g. mean residence time data) as we move to larger watershed scales 

and begin to incorporate conservative mixing between reservoirs. Our main message in 

this work is that rather than being “right for the wrong reasons”, a better process 

representation of catchment hydrology in conceptual runoff modeling should be “less 

right, for the right reasons.” 
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Figures 
1. The 3-box model developed for the Maimai watershed in New Zealand including 

hillslope, hollow and riparian zone reservoirs. 
2. Modeled outflow, storage and groundwater levels for the period September-

December 1987. Measured runoff is shown by the hatched line. 
3. Goodness of fit measures for runoff efficiency, groundwater levels, new water ratios, 

soft groundwater measures, and parameter-value acceptability for calibrations agains 
various combinations hard and soft information. The point is the median of all 
calibration trials and the lines indicate the range. 
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Fig. 2 
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